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Abstract. In this paper we generalize the hierarchically semiseparable (HSS) representations
and propose some fast algorithms for HSS matrices. We provide a new linear complexity ULV T

factorization algorithm for symmetric positive definite HSS matrices with small off-diagonal ranks.
The corresponding factors can be used to solve compact HSS systems also in linear complexity. Nu-
merical examples demonstrate the efficiency of the solver. We also present fast algorithms including
new HSS structure generation, HSS form Cholesky factorization, and model compression. These
algorithms are useful for problems where off-diagonal blocks have small numerical ranks.
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1. Introduction. In this paper we consider some fast algorithms for a semisepa-
rable representation of dense matrices, called hierarchically semiseparable (HSS) rep-
resentation, introduced by Chandrasekaran, Gu, et al. [7, 8]. The HSS structure is
a generalization of H-matrices in [13, 15, 14] and sequentially semiseparable repre-
sentations in [3, 4, 5], and is also a special case of the representations in the fast
multiple method [12, 2, 17, 18]. These structures provide new choices for developing
fast solvers or finding effective preconditioners. [8] shows that under certain circum-
stances, a ULV T factorization of an N × N HSS matrix H is possible with a linear
complexity O(N), where U and V are orthogonal matrices and L is a lower-triangular
matrix (ULV T is a term mentioned in the structured system solvers in [7, 8]).

In fact by exploiting special matrix structures when solving discretized PDEs such
as elliptic equations we can represent or approximate dense matrices with appropriate
structured matrices. Chandrasekaran, Gu, et al. develop some fast algorithms for
matrices whose off-diagonal blocks have small numerical ranks [7, 8]. This low-rank
property is the basis for the effectiveness of HSS structures. Here by numerical ranks
we mean the ranks revealed by rank revealing QR factorizations or τ -accurate SVD
(in the SVD all singular values less than a tolerance τ are discarded).

The off-diagonal blocks considered in HSS structures are shown in Figure 1.1.
They are block rows without diagonal blocks. We call these off-diagonal blocks HSS
blocks, HSS blocks can be defined hierarchically for different levels of splittings of
the matrix. Correspondingly, we call the maximum (numerical) rank of all HSS off-
diagonal blocks of a matrix A its HSS rank. Note that off-diagonal block columns can
be similarly considered.

HSS matrices can be conveniently represented with binary tree structures. These
trees are called HSS trees which allows the operations on HSS matrices to be done
conveniently on the tree nodes. Some HSS operations have been discussed in [7, 8],
including structure generation, system solving, etc. Specifically, for an N ×N matrix
H with small HSS rank, the cost for structure generation is O(N2), and with the
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Fig. 1.1. HSS off-diagonal blocks.

compact HSS representation of H, it takes only O(N) to solve Hx = b. The paper
[8] shows such a solver using an implicit ULV T factorization.

In this paper first simplify and generalize the HSS representations. Particularly,
incomplete HSS trees and postordering HSS tree notations make HSS representations
more flexible in matrix operations and more suitable for parallel computations. As an
example, postordering HSS tree structures simulate certain postordering elimination
tree structure used in methods such as the multifrontal method [10, 16]. This enables
us to develop fast solvers for some sparse problems [6]. Then we provide a new
structure generation algorithm which has better performance than the one in [8].

We find that sometimes it is necessary to compute an explicit factorization of an
HSS matrix. We give an algorithm which provide an explicit ULV T factorization for
a symmetric positive definite (SPD) H with linear complexity. Improvements over
the algorithm in [8] are given. We call this factorization a generalized HSS Cholesky
factorization, which will be used in solving more complicated problems [6]. An efficient
system solver using the generalized HSS Cholesky factors is also provided. Numerical
experiments are used to demonstrate the efficiency of the solver.

We also give an algorithm which computes the HSS form of the traditional
Cholesky factor of an SPD H. We do not use this algorithm directly since its com-
plexity is O(N2). However, the idea of this algorithm will be used to compute Schur
complements when a matrix is partially factorized [6]. We also give a compression
algorithm which brings a redundant HSS form with small HSS rank to a compact
form. The compression also has linear complexity.

All these algorithms are done via postordering HSS tree structures.

2. Generalizations of HSS representations. In this section we discuss HSS
structures. HSS structures enable us to develop fast algorithms with many advantages
which we will discuss later. The class of HSS structures is a generalization of SSS
structures [8, 7] and H-matrices [13, 15]. They are featured by hierarchical low-rank
properties in the off-diagonal blocks as shown in Figure 1.1. This kind of matrix
arises in many applications such as numerical solutions of integral equations. These
low-rank properties can be conveniently characterized by HSS representations.

2.1. Simplified HSS notations. A block 4× 4 HSS matrix looks like




n1 n2 n3 n3

m1 D1 U1B21V
T
2 U1R21B11W

T
23V

T
3 U1R21B11W

T
24V

T
4

m2 U2B22V
T
1 D2 U2R22B11W

T
23V

T
3 U2R22B11W

T
24V

T
4

m3 U3R23B12W
T
21V

T
1 U23R23B12W

T
22V

T
2 D3 U3B23V

T
4

m4 U4R24B12W
T
21V

T
1 U24R24B12W

T
22V

T
2 U4B24V

T
3 D4


,

(2.1)
where we use notations slightly different from those in [7, 8]. That is, we remove
the level subscripts from the generators as in the original notations. We call these
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notations simplified HSS notations. They make the storage and programming more
convenient. An HSS matrix depends on the partition sequences m1, · · · ,mk, and
n1, · · · , nk. The matrices Di,Ui, Vi, · · · are also called generators. The hierarchical
structure of HSS matrices can be seen by writing (2.1) in a block 2× 2 HSS form



(
D1 U1B21V

T
2

U2B22V
T
1 D2

) (
U1R21

U2R22

)
B11

(
WT

23V
T
3 WT

24V
T
4

)
(

U3R23

U4R24

)
B12

(
WT

21V
T
1 WT

22V
T
2

) (
D3 U3B23V

T
4

U4B24V
T
3 D4

)


 ,

or more conveniently, in the tree structure as Figure 2.1.

Fig. 2.1. HSS tree for the block 4× 4 matrix (2.1) (W11, R11, W12, R12: empty).

As an example we can identify the (2, 3) block of (2.1) by considering the path
connecting the nodes 2 and 3 in the bottom level of the tree in Figure 2.1:

U2
2(2)

R22−→ 1(1)
B11−→ 2(1)

WT
23−→

V T
3

3(2).

where the notation i(j) denotes node i in level j, and related generators are associated
with nodes and edges in the path.

We can further associate with all nodes with U, V generators, not only the bottom
level nodes. Upper level U, V generators can be obtained based on lower level gener-
ators. As an example the 1(1) node in Figure 2.1 can be associated with generators

U1(1) =
(

U1R21

U2R22

)
, V1(1) =

(
V1W21

V2W22

)
.

Therefore the paths connecting upper level nodes can define blocks in the upper levels
in the matrix. For example, the path connecting node 1(1) and 2(1) defines the (1, 2)
block if matrix (2.1) is in a 2× 2 block form.

Since the nodes and edges are associated with the generators in (2.1), we also
call the generators Rij , Wij translation operators. The nodes lie in different levels.
The root is in level 0, and the children of the root are in level 1, etc. The HSS
representations also reflect the hierarchical structure in off-diagonal block columns.
In fact, we can see that each Ui is the column basis for an off-diagonal block row, and
each Vj is the row basis for an off-diagonal block column.



4 S. CHANDRASEKARAN, M. GU, X. S. LI AND J. XIA

2.2. Partial HSS form. Note that in Figure 2.1 the HSS tree is a full binary
tree, that is, the tree has 2l − 1 nodes if its depth is l. But HSS trees can be more
general. For example if we merge the first block row/column of the matrix (2.1) we
get an HSS form corresponding to the tree (i) in Figure 2.2. Here each node in the
tree has a sibling. However we may have even more general cases. For example, the
trailing 3 × 3 submatrix of 2.1 can be also viewed as another HSS matrix with HSS
tree as shown in Figure 2.2(ii).

(i) Partial HSS tree with full siblings (ii) General partial HSS tree

Fig. 2.2. Partial HSS trees

We say an HSS matrix is in full HSS form if its HSS tree is a full binary tree. An
HSS tree which is not full is said to be a partial HSS tree, and the corresponding HSS
matrix is in partial HSS form. In various HSS operations such as solving HSS systems
it is often more convenient to consider partial HSS trees. Thus we consider operations
on general partial HSS matrices, not necessarily restricted to full HSS matrices as in
[8]. As the tree (ii) in Figure 2.2 can be transformed to the form (i) by merging certain
nodes and edges, it usually suffices to consider partial HSS trees with full siblings. An
HSS tree with full siblings is an HSS tree where every node other than the root has a
sibling, in other words, every non-leaf node has two children. If i has children c1 and
c2 and c1 < c2, we say i is the parent of c1 and c2, and c1 and c2 are the left child
and right child respectively.

In the following we will use partial HSS trees except in some particular cases
which will be specified. The use of partial HSS forms brings more flexibility in many
algorithms including our superfast multifrontal method.

2.3. Postordering HSS notations. HSS trees enable us to conveniently present
HSS algorithms. To effectively traverse HSS trees (especially partial HSS trees) and
organize the generators we can order the tree nodes according to its postordering.
Then the HSS tree in Figure 2.1 can actually have the form in Figure 2.3. That is,
we can further make the above “simplified HSS notations” more compact by labeling
the generators according to the postordering of the nodes that they are associated
with. That means that only 1 subscript is used, Ui, Vi, Ri,Wi, Bi. We call these HSS
notations postordering HSS notations.

With this set of notations the matrix (2.1) now looks like




D1 U1B1V
T
2 U1R1B3W

T
4 V T

4 U1R1B3W
T
5 V T

5

U2B2V
T
1 D2 U2R2B3W

T
4 V T

4 U2R2B3W
T
5 V T

5

U4R4B6W
T
1 V T

1 U4R4B6W
T
2 V T

2 D4 U4B4V
T
5

U5R5B6W
T
1 V T

1 U5R5B6W
T
2 V T

2 U5B5V
T
4 D5


 . (2.2)
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Fig. 2.3. Postordering of the HSS tree in Figure 2.1.

Here similar to the example in Section 2.1 we can identify the blocks based on the
paths connecting some nodes. For example the (2, 3) block can be defined by the
path 2 → 3 → 6 → 4. Postordering HSS notations are convenient in parallelization,
structure transformation, and data manipulation.

We are interested in HSS representations for matrices with small HSS ranks. For
these HSS matrices many efficient algorithms exist. In contrast with the HSS rank of
a matrix H, we call the maximum of the dimensions of its generators {Ri}, {Wi}, {Bi}
the HSS representation rank of H. The HSS representation is said to be compact if
the HSS rank of H is small, and the HSS representation rank is close to the HSS rank.
A compact HSS matrix can nicely captured the low-rank property of the matrix.

In the paper [8] the authors proposed HSS algorithms including HSS construction
and HSS system solving. Here we are going to present more operations for HSS
matrices, including new fast and stable construction, compression, factorization, etc.
They are all for general (partial) HSS trees in postordering notations. These HSS
operations together with those in [6] build a complete set of HSS algorithms which
can be used in different applications.

3. Stable and fast construction of HSS matrices. Given a matrix H and a
partition sequence {mi} [8] provides a construction algorithm based on (τ -accurate)
SVD factorizations. That method can only generate HSS matrices with full HSS trees,
and it has the potential of instability. Here we provide a new algorithm which follows
a general (partial) postordering HSS tree. It is fully stable and costs less than the
one in [8]. We first demonstrate the procedure of constructing a 4×4 block HSS form
(2.2) for H using the postordering HSS tree in Figure 2.3. Initially, we partition the
matrix H into a 4× 4 block form

H =




D1 H12 H14 H15

H21 D2 H24 H25

H41 H42 D4 H45

H51 H52 H54 D5


 ,

where the subscripts follow the node ordering. Based on the order of row/column
compressions and the traversal of the HSS tree we have the following steps. Here by
compressions we mean (rank revealing) QR factorizations.
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(a) Node 1.
First we compress the first off-diagonal block row in level 2 (bottom level) by a

QR factorization
(

H12 H14 H15

)
= U1

(
T12 T14 T15

)
,

where Tij ’s are temporary matrices (also below, including any T̃ij , T̂ij). Then we QR
factorize the transpose of the first off-diagonal block column

(
HT

21 HT
41 HT

51

)
= V1

(
TT

21 TT
41 TT

51

)
.

Then we can rewrite H as

H =




D1 U1T12 U1T14 U1T15

T21V
T
1 D2 H24 H25

T41V
T
1 H42 D4 H45

T51V
T
1 H52 H54 D5


 .

(b) Node 2.
Now compress the second off-diagonal block row and column but ignoring any

basis U, V (i.e. V T
1 , U1 here)

(
T21 H24 H25

)
= U2

(
B2 T24 T25

)
,(

TT
12 HT

42 HT
52

)
= V2

(
BT

1 TT
42 TT

52

)
.

Now H becomes

H =




D1 U1B1V
T
2 U1T14 U1T15

U2B2V
T
1 D2 U2T24 U2T25

T41V
T
1 T42V

T
2 D4 H45

T51V
T
1 T52V

T
2 H54 D5


 .

(c) Node 3.
Node 3 is in level 1 with children nodes 1 and 2. The matrix H has two block

rows/columns in terms of level 1. The off-diagonal block row corresponding to node
3 can be obtained by merging appropriate blocks of the off-diagonal block rows of
nodes 1 and 2. We identify and compress it (ignoring any basis U, V )

(
T14 T15

T24 T25

)
=

(
R1

R2

) (
T̃34 T̃35

)
.

Then compress the first off-diagonal block column in level 1 (ignoring any basis U, V ).
(

TT
41 TT

51

TT
42 TT

52

)
=

(
W1

W2

) (
T̃T

43 T̃T
53

)
.

We can similarly write H in its new form.
(d) Nodes 4 and 5.
Now we compress the third and forth off-diagonal block rows/columns correspond-

ing to nodes 4 and 5, respectively. Ignore any UR, WT V T basis.
(

T̃43 H45

)
= U4

(
T̂43 T45

)
,

(
T̃T

34 HT
54

)
= V4

(
T̂T

34 TT
54

)
,

(
T̃53 T54

)
= U5

(
T̂53 B5

)
,

(
T̃T

35 TT
45

)
= V5

(
T̂T

35 BT
4

)
.
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These give

H =




D1 U1B1V
T
2 U1R1T̂34V

T
4 U1R1T̂35V

T
5

U2B2V
T
1 D2 U2R2T̂34V

T
4 U2R2T̂35V

T
5

U4T̂43W
T
1 V T

1 U4T̂43W
T
2 V T

2 D4 U4B4V
T
5

U5T̂53W
T
1 V T

1 U5T̂53W
T
2 V T

2 U5B5V
T
4 D5


 .

(f) Node 6.
This is the late but one node. Here are eventually the final compressions. Com-

press the second off-diagonal block row/column in level 1 (corresponding to node 6).
Ignore any UR, WT V T basis.

(
T̂43

T̂53

)
=

(
R4

R5

)
B6,

(
T̂T

34

T̂T
35

)
=

(
W4

W5

)
BT

3 .

(g) Node 7.
No actual actions need to be taken. Put together all the generators in previous

steps and we get the form (2.2). The general algorithm can be organized in the
following way using a stack.

Algorithm 3.1. (Fast and stable HSS construction)
1. For a given HSS tree structure and a partition sequence {mj}, associate each

leaf node a block size mj . Allocate space for a stack.
2. For node i = 1, · · · , n

(a) If node i is a leaf node, locate the appropriate off-diagonal row Xi and
column Yi in matrix H. Compress them by QR factorizations (with a
tolerance when necessary).

Xi = UiX̃i, Y T
i = ViỸ

T
i ,

where Xi and Yi are overwritten by X̃i and Ỹi, respectively. Push the
new Xi and Yi onto the stack.

(b) Otherwise, pop matrices Xc1 , Yc1 and Xc2 , Yc2 from the stack, where c1

and c2 are the children of i.
i. Form the off-diagonal block row Xi based on Xc1 and Xc2 (see

Figure 3.1). Xc1 and Xc2 share some column subscripts in the level
of c1 and c2. These columns together form Xi. Similarly form the
off-diagonal block column Yi.

Fig. 3.1. Forming off-diagonal block row from children.

ii. Compress Xi and Yi. Compute the generators Rc1 , Rc2 ,W
T
c1

, WT
c2

,
and Xi and Yi are replaced by X̃i and Ỹi, respectively.

Xi =
(

Rc1

Rc2

)
X̃i, Y T

i =
(

Wc1

Wc2

)
Ỹ T

i .

iii. Identify Bc1 and Bc2 from Xc2 and Yc2 (see Figure 3.2). In step
(2bi) the columns in Xc2 that do not go to Xi form Bc2 , and the
rows that do not go to Yi form Bc1 .
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Fig. 3.2. Identifying child B-generators (Bc1 and Bc2).

Here each off-diagonal block row compression is followed by a column compression.
For each level we can also first compress all the off-diagonal block rows, and then
compress all the off-diagonal block columns. If H is symmetric then we only need
to compress the off-diagonal block rows or columns, not both, as we can use Ri =
Wi, Ui = Vi for all i, and Bc1 = BT

c2
for siblings c1 and c2.

This new algorithm is stable in all steps due to the use of orthogonal transforma-
tions. Its cost is O(N2) but with a hidden constant smaller than that in the original
construction algorithm in [8]. For example, we consider the cost for constructing the
above block 4× 4 HSS matrix. For simplicity, assume all mi ≡ m = N

4 , the matrix H
has HSS rank p ¿ m, and all matrices to be factorized have ranks p. The main costs
are for the QR factorizations of the matrices as listed in Table 3.1. The total cost is
about 3pN2 + 6p2N − 12p3 flops. On the other hand, the construction algorithm in
[8] needs SVDs of eight m× 3m matrices and about twenty multiplications of matri-
ces with various sizes ((p, p), (p,m), (p, 2m), etc.). The SVDs alone are already much
more expensive than our new algorithm.

matrix sizes m× 3m p× (2m + p) 2p× 2m m× (m + p) m× 2p 2m× p
number of matrices 2 2 2 2 2 2

Table 3.1
Matrices for QR factorizations in the construction of the block 4× 4 HSS matrix example.

4. Fast and superfast solvers for SPD HSS systems.

4.1. Fast Cholesky factorization of SPD HSS matrices. Given the HSS
form of a symmetric positive definite (SPD) matrix we can conveniently compute its
Cholesky factorization. As the matrix is symmetric, the generators satisfy

DT
i = Di, Ui = Vi, Ri = Wi, and Bc1 = BT

c2
for siblings c1 and c2.

Without loss of generality we consider to factorize an SPD HSS matrix

H =




D1 U1B1U
T
2 U1R1B3R

T
4 UT

4 U1R1B3R
T
5 UT

5 · · ·
U2B

T
1 UT

1 D2 U2R2B3R
T
4 UT

4 U2R2B3R
T
5 UT

5

U4R4B
T
3 RT

1 UT
1 U4R4B6R

T
2 UT

2 D4 U4B4U
T
5 · · ·

U5R5B
T
3 RT

1 UT
1 U5R5B6R

T
2 UT

2 U5B
T
4 UT

4 D5

...
...

. . .




,
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whose HSS tree is shown in Figure 4.1. We think of it as the leading principal block
of an HSS matrix with more blocks. The factorization consists of two major opera-
tions, eliminating the principal diagonal block, and updating the Schur complement.
Correspondingly there are two operations on the HSS trees, one is to remove a leaf
node, and another, to updated the remaining transition operators.

Fig. 4.1. HSS tree for a block 8× 8 symmetric HSS matrix.

First we factorize D1 = L1L
T
1 and obtain

H =
(

L1

l1 I

) (
LT

1 lT1
H̃

)
,

where

lT1 =
(

Ũ1B1U
T
2 Ũ1R1B3R

T
4 UT

4 Ũ1R1B3R
T
5 UT

5 · · · )

H̃ =




D̃2 U2R̃2B3R
T
4 UT

4 U2R̃2B3R
T
5 UT

5 · · ·
U4R4B

T
3 R̃T

2 UT
2 D̃4 U4B̃4U

T
5 · · ·

U5R5B
T
3 R̃T

2 UT
2 U5B̃

T
4 UT

4 D̃5

...
...

. . .


 ,

with

Ũ1 = L−1
1 U1,

D̃2 = D2 − U2B
T
1 ŨT

1 Ũ1B1U
T
2 , R̃2 = R2 −BT

1 ŨT
1 Ũ1R1

D̃4 = D4 − U4R4B
T
3 RT

1 ŨT
1 Ũ1R1B3R

T
4 UT

4 , B̃4 = B4 −R4B
T
3 RT

1 ŨT
1 Ũ1R1B3R

T
5 ,

D̃5 = D5 − U5R5B
T
3 RT

1 ŨT
1 Ũ1R1B3R

T
5 UT

5 , R̃6 = R6 −BT
3 RT

1 ŨT
1 Ũ1R1R3,

...

We can see the Schur complement H̃ takes a form similar to as the original matrix
with its first block row/column removed. But it is not easy to check the matrix
updates. In fact if we turn to the HSS tree then things get clear. We first eliminate
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node 1 by factorizing D1 = L1L
T
1 , updating Ũ1 = L−1

1 U1 get l1, and removing the
associated generators R1, B1. Next we update all remaining nodes. For example, for
node 2, the update to D2 is −U2B

T
1 ŨT

1 Ũ1B
T
1 U2 which is associated with the path

2 → 1 → 2; the update to R2 is −BT
1 ŨT

1 Ũ1R1 which is associated with the path
3 → 1 → 2. For node 4, the update to D4 is −U4R4B

T
3 RT

1 ŨT
1 Ũ1R1B3R

T
4 UT

4 which
is associated with the path 4 → 6 → 3 → 1 → 3 → 6 → 4. No generators associated
with node 6 appears in this expression as in this path there is no edge associated with
node 6.The update to B4 is −R4B

T
3 RT

1 ŨT
1 Ũ1R1B3R

T
5 which is associated with the

path 4 → 6 → 3 → 1 → 3 → 6 → 5.
In general, following the postordering of the nodes i = 1, · · · , n we can perform

two steps for each node i. In the first step, eliminate node i by computing

Di = LiL
T
i , D̃i = Li, Ũi = L−1

i Ui.

In the second step update the Schur complement. This means, we consider each node
j = i + 1, · · · , n according to the following rules.

1. If node j is a leaf node, locate the path connecting node j and i: j → · · · →
i → · · · → j, and update Dj , D̃j = Dj − UjRj · · ·RT

i ŨT
i ŨiRi · · ·RT

j UT
j .

2. If node j is a left child, locate the path connecting node j to i and then
to s, the sibling of j: j → · · · → i → · · · → s, and update Bj , B̃j =
Bj −Rj · · ·RT

i ŨT
i ŨiRi · · ·RT

s .
3. If node j is a right child of a node p which is an ascendant of i, locate the path

connecting node j to i and then to p, the sibling of j: j → · · · → i → · · · → p,
and update Rj , R̃j = Rj − BT

s · · ·RT
i ŨT

i ŨiRi · · ·Rs where s is the sibling of
j.

Remove node i from the HSS tree Nodes of the HSS tree are removed along the
progress of the elimination. Leaf nodes are removed immediately after its elimination,
and non-leaf nodes become leaf nodes during the process (children are removed before
parents).

This algorithm costs O(N2) where N is the dimension of H. It can be derived as
follows. Assume the HSS tree is full and has n nodes, and all HSS block rows/columns
have the same size d (d = O

(
N

log n

)
). Also assume the HSS rank is p. Then in each

elimination step k the update of the remaining nodes costs O((n−i)p3)+O((n−i)dp2).
Then the total cost is

n∑

k=1

O((n− i)p3) + O((n− i)dp2) = O(N2).

This is actually too much for us, as we can factorize the matrix and solving the
system in linear time. The algorithm does not maintain data locality of the HSS tree
structure either.

This algorithm can be used to find an explicit HSS form for the Cholesky factor.
The ideas are also useful for finding Schur complements in some situations when only
certain leading nodes of the HSS tree need to be eliminated (see, e.g. [6]). Note that
this factorization costs O(N2) and is not the main factorization routine in the fast
direct solver for discretized problems in [6].

4.2. Superfast generalized Cholesky factorization of HSS matrices. As
shown in [8], there exists O(N) algorithms for solving a compact HSS system. The
superfast HSS system solver in [8] computes an implicit ULV T factorization with U, V
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orthogonal and L lower triangular. However, sometimes an explicit factorization of the
HSS matrix may be convenient, say, when different right-hand side vectors are used.
Although the solver in [8] can be modified to provide explicit factorizations for SPD
HSS matrices, more simplifications and improvements can be achieved. In this section
we provide an improved linear time factorization scheme for a compact SPD HSS
matrix. It has better efficiency and data locality. The factorization also follows the
postordering traversal of the HSS tree. It keeps the data operations local and doesn’t
need to update remaining nodes during the eliminations. As our algorithm computes
an explicit ULV T factorization instead of the traditional Cholesky factorization, we
call it a generalized Cholesky factorization. That is, the generalized Cholesky factor
consists of a set of triangular matrices and orthogonal transformations. This scheme
and the HSS solvers in [8, 7] share similar ideas in the compressions of the row/column
basis of the off-diagonal blocks. We factorize a compact SPD HSS matrix H such as
the one in Figure 4.1. There are three major steps.

4.2.1. Compressing off-diagonal blocks. We consider eliminating node k in
the HSS tree. We use notations and pictorial representations similar to those in [8]. As
mentioned before for block row i the off-diagonal block excluding the diagonal block
Dk has column basis consisting of the columns of Ui. Assume Ui has size mi×pi. In a
compact HSS form we should have mi ≥ pi. Here we leave the one mi = pi to Section
4.2.3 and only consider the case mi > pi. In such a situation we can introduce a QL
factorization with an orthogonal transformation Qi such that

Ûi ≡ QT
i Ui =

( pi

mi − pi 0
pi Ũi

)
. (4.1)

Now multiply qT
i to the entire block row i and the first mi−pi rows of the off-diagonal

block become zeros (see Figure 4.2), because Ui is the leading term in the off-diagonal
block.

Fig. 4.2. A pictorial representation for the compressions the off-diagonal block rows. Black
shapes show the nonzero portions in the U ’s. Nonzero patterns for the basis of column off-diagonal
blocks come from symmetry.

As the HSS form is symmetric, this will also introduce mi − pi zero columns in
the i-th off-diagonal block column.
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4.2.2. Factorizing diagonal blocks. The diagonal block of row/column i is
now changed to D̂i = QT

i DiQi. We can partition it conformally as

D̂i =
( mi − pi pi

mi − pi Di;1,1 Di;1,2

pi Di;2,1 Di;2,2

)
. (4.2)

Factorize the pivot block using Di;1,1 = Li;1,1L
T
i;1,1

D̂i =
(

Li

Di;2,1L
−T
i I

)(
LT

i L−1
i Di;1,2

D̃i

)
, (4.3)

where

D̃i = Di;2,2 −Di;2,1L
−T
i L−1

i Di;1,2 (4.4)

is the Schur complement. See Figure 4.3(i).

(i) (ii)

Fig. 4.3. A pictorial representation for the factorizations of the diagonal blocks. Black shapes
show the nonzero portions in the D’s and the U ’s, and nonzero patterns for the basis of column
off-diagonal blocks come from symmetry.

Therefore we can eliminate the block Di;1,1. If we replace Di with D̃i in (4.4),
and Ui with Ũi in (4.1) we get another HSS matrix but with smaller dimensions.
See Figure 4.2(ii). Then we can recursively do off-diagonal block compressions and
diagonal block factorizations (denoted by compression-factorization steps).

4.2.3. Merging child blocks. We can do off-diagonal block compressions and
diagonal block factorizations for all same level nodes in the HSS tree. The dimension of
the matrix reduces after each elimination (see Figure 4.2(ii)). However it is possible
that no off-diagonal blocks can be further compressed, say, when Uk is a square
matrix (mk = pk in the previous section). Here again instead of doing elimination
level-wise we follow the postordering of the tree. That is, after we finish compression-
factorization steps for two child nodes c1 and c2 which are siblings, we merge their
remaining information and pass to their parent p. For example in Figure 4.2(ii) we
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can merge the nonzero blocks for node 1 and 2 and form generators D3 and U3 for
node 3:

D3 =
(

D̃1 Ũ1B1Ũ
T
2

ŨT
2 BT

1 Ũ1 D̃2

)
, U3 =

(
Ũ1R1

Ũ2R2

)
. (4.5)

Now we can totally remove node 1 and 2 from the HSS tree. Then following the tree
we can eliminates other nodes until we reach the root n where we can factorize Dn

directly.
Note that this algorithm is different from the algorithm in Subsection 4.1 in

that parent nodes carry information from their children. As an example, after the
elimination of node 1 and 2, the updates are not applied to all remaining nodes,
instead, to only their parent, node 3. Information is passed locally to parents only.
This nice property is just like the multifrontal method [10, 16] and is thus used in the
superfast multifrontal method in [6]. This procedure keeps good data locality, and
leads to the linear complexity of the factorization algorithm.

4.2.4. Algorithm and performance. Now we summarize the steps in the fol-
lowing algorithm.

Algorithm 4.1. (Superfast Generalized HSS Cholesky factorization)
For an HSS matrix H with n nodes in the HSS tree, computed a generalized Cholesky
factorization.
For node i = 1, · · · , n

1. For node i = 1, · · · , n− 1.
(a) If node i is a non-leaf node.

i. Pop four matrices D̃c2 , Ũc2 , D̃c1 , Ũc1 from the stack, where c1, c2 are
the children of i.

ii. Obtain Di and Ui by

Di =
(

D̃c1 Ũc1Bc1Ũ
T
c2

Ũc2B
T
c1

ŨT
c1

D̃c2

)
, Ui =

(
Ũc1Rc1

Ũc2Rc2

)
. (4.6)

(b) Compress the off-diagonal blocks through the compression of Ui by (4.1).
Push Ũi onto the stack.

(c) Update Di with D̃i = QT
i DiQi. Factorize D̃i with (4.3) and obtain the

Schur complement D̃i as (4.4). Push D̃i onto the stack.
2. For root node n, compute the Cholesky factorization Dn = LnLT

n .
Remark 4.2. Algorithm 4.1 presents the full factorization, that is, for all tree

nodes. If we need partial factorizations, say, we only factorize r nodes, where node
r < n is the root of a subtree, then in Algorithm 4.1 we iterate until node r instead
of n. After the factorization we replace the entire subtree by node r whose associated

generators are Rr, Br, and Ur =
(

Ũc1Rc1

Ũc2Rc2

)
where c1, c2 are the children of r.

Note the results after the generalized Cholesky factorization include lower triangu-
lar matrices Li’s, orthogonal transformations Qi’s in the compressions, and applicable
permutations during the merge step. We call them generalized HSS Cholesky factors.
To clearly see roles that these factors play in the actual factorization and representa-
tion of the original matrix, we look at a block 2 × 2 example. The compression step
is essentially

H =
(

D1 U1B1U
T
2

U2B
T
1 UT

1 D2

)
=

(
Q1

Q2

)(
D̂1 Û1B

T
1 ÛT

2

Û2B
T
1 ÛT

1 D̂2

)(
QT

1

QT
2

)
.
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where the hatted notations follow those in (4.1) and (4.2). Then the partial factor-
izations of D̂1 and D̂2 lead to

H =
(

Q1

Q2

)
L12




(
I

D̃1

) (
0

Ũ1B1Ũ
T
2

)

(
0

Ũ2B
T
1 ŨT

1

) (
I

D̃2

)


 LT

12

(
QT

1

QT
2

)
,

where the notation I may represent identity matrices with different sizes and

L̂3 =




(
L1

T1 I

)

(
L2

T2 I

)


 with T1 = D1;2,1L

−T
1 , T2 = D2;2,1L

−T
2 . (4.7)

The merge process is then to use permutations P1 and P2 to bring together appropriate
dense blocks to form D3 as shown in (4.5) (There is no U3 as there are only two blocks
here).

H =
(

Q1

Q2

)
L̂3

(
P1

P2

)(
D̃1 Ũ1B1Ũ

T
2

ŨT
2 BT

1 Ũ1 D̃2

)(
PT

1

PT
2

)
L̂T

3

(
QT

1

QT
2

)

Then another factorization step follows. D3 = L3L
T
3 , and

H =
(

Q1

Q2

)
L̂3

(
P1

P2

)
D3

(
PT

1

PT
2

)
L̂T

3

(
QT

1

QT
2

)

= LHLT
H ,

where

LH =
(

Q1

Q2

)
L̂3

(
P1

P2

)
L3 (4.8)

is the actual generalized HSS Cholesky factor, though instead we used the name for
{Li}, {Ti}, {Qi}, {Pi}, where Ti = Di;2,1L

−T
i are blocks in the lower triangular part

as in (4.7). We say LH is “pseudo-triangular”. This procedure is recursive and we
can easily generalize this example.

The applicable permutations {Pi} during the merge step can be reflected by the
sizes of all {Ui} as the Pi depends on the locations of Ũi in (4.1) (This will verified
in the HSS solver in Section 4.3). That is, we can use {mi, pi} in (4.1). Now as
mi is the dimension of Qi we only need to store pi. Thus we say {Li}, {Ti}, {Qi},
{pi} are the generalized HSS Cholesky factors. Similarly we can define a generalized
HSS Cholesky factorization tree, or for short, HSS factorization tree, which has the
same tree structure as the original HSS matrix and has Li, Ti, Qi, pi associated with
node i. Furthermore the transformation matrices Qi can be done with Householder
reflections and thus only certain column vectors need to be stored. Later when we
apply Qi to other matrices or vectors it can be very efficient. The algorithm has linear
complexity as shown in the following theorem.

Theorem 4.3. Assume an N ×N SPD matrix H is in compact HSS form with
a full HSS tree. Assume the row (column) dimensions of the block rows (columns)
are of dimension O(p), where p is the HSS rank of H. Then the generalized Cholesky
factorization of H with Algorithm 4.1 has complexity O(p2N).
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Suppose H has HSS rank p, and all block rows have the same row dimension
m = O(p). Assume node i (except the root) has a sibling j and a parent p, and if i
is a non-leaf node it has two children c1 and c2. We can further assume that Ui, Ri,
and Bi have dimensions mi×ki, ki×kp, and ki ×kj respectively. Then for each node
i the costs (leading terms only) are listed in the Table 4.1 by using the basic matrix
operations that can be found for example in [11, 9].

Node type Operation Cost
leaf node compression (4.1) 2k2

i

(
mi − ki

3

)
=O(mp2)

factorization (4.3) 1
3 (mi−ki)

3+(mi−ki)
2
ki+(mi−ki) k2

i =O((m−p)3)
non-leaf merge step (4.6) 2(mc1k

2
c1

+mc2k
2
c2

+mc1kc1ki+mc2kc2ki) =O(p3)
node compression (4.1) 2k2

i

(
mi − ki

3

)
=O(p3)

factorization (4.3) 1
3 (mi−ki)

3+(mi−ki)
2
ki+(mi−ki) k2

i =O(p3)
Table 4.1

Cost of superfast HSS Cholesky factorization.

To simplify the calculations we assume each bottom level Ui has the same dimen-
sion m, and all upper level Ui, all Ri, and all Bi have dimension O(p). The counts
are shown in the last column of Table 4.1. The HSS tree has N

m leaf nodes, and N
m − 1

non-leaf nodes. Therefore the total cost is

O

(
mp2 × N

m

)
+ O

(
p3 × N

m

)
= O(p2N) + O(

p

m
p2N) = O(p2N),

as m = O(p).
We implemented this algorithm in Fortran 90 and tested it on some nearly random

SPD HSS matrices with sizes from 256 to 1, 048, 576. Each of these matrices are
obtained in the following way. We multiply a random matrix with its transpose,
construct the HSS form for the product, and then drop some rows and columns of
the generators to make all mi ≡ m. (For convenience, we choose m ≡ 2p so that
the factorization associated with each node starts with a compression step instead of
merging). Duplications of some diagonal HSS blocks are used when the matrix size
is too large. The block sizes m range from 16 to 128. We ran the code on a Sun
UltraSPARC-II 248Mhz server with 1280Mb RAM. The CPU times of our superfast
algorithm are shown in Table 4.2. We also include the times for the standard Cholesky
factorization from LAPACK [1] routine DPOTRF on the original matrices. The results
are consistent with the flop counts, and the superfast algorithm is more efficient than
DPOTRF for even reasonably small matrices. The superfast algorithm is also memory
efficient. For modestly large matrix sizes, DPOTRF fails due to insufficient memory. Our
algorithm is stable when ||Ri|| < 1 for a submultiplicative norm, by a similar idea as
the solver in [8]. The claimed stability is due to the use of orthogonal transformations.
We will show some accuracy results for solving linear system in the next section.

4.3. HSS linear system solver with generalized Cholesky factors. After
we compute generalized Cholesky HSS factorizations we can solve HSS systems with
substitution. This solver thus differs from the one in [8, 7] where no explicit factor-
ization is computed. Assume we solve the system Hx = b where H = LHLT

H has
generalized Cholesky factors {Li}, {Ti}, {Qi}, {pi}, as computed in Algorithm 4.1.
Just like the traditional triangular system solving with substitutions, our new HSS
solver also have two stages, backward substitution and forward substitution. We solve
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Size
m = 2p 256 512 1024 2048 4096 8192 16, 384

16 0.068 0.076 0.104 0.172 0.280 0.520 0.953
32 0.083 0.113 0.169 0.296 0.555 1.063 2.211
64 0.133 0.223 0.398 0.797 1.570 3.172 6.195

128 0.333 0.965 1.702 3.543 7.539 15.210 31.367
DPOTRF 0.074 0.765 11.339 105.068 845.855 6857.316 · · ·

Size
m = 2p 32, 768 65, 536 131, 072 262, 144 524, 288 1, 048, 576

16 1.855 3.773 7.453 14.914 32.797 59.547
32 4.270 8.191 16.512 33.316 69.102 · · ·
64 12.406 25.309 49.855 101.117 · · · · · ·

128 63.004 132.363 256.910 · · · · · · · · ·
Table 4.2

Computation times in seconds for the superfast Cholesky HSS factorization and DPOTRF. Tim-
ings are not shown when there is insufficient memory.

the following two “pseudo-triangular” systems.

LHy = b, (4.9)

LT
Hx = y. (4.10)

Here the substitutions are done along the HSS tree, reverse-postordering (or top-down,
backward) and postordering (or bottom-up, forward) respectively.

4.3.1. Forward substitution. Here we solve (4.9). If we have, say, an explicit
expression like (4.8) then we can write explicitly

y = L−1
3

(
PT

1

PT
2

)
L̂−1

3

(
QT

1

QT
2

)
b (4.11)

which involves matrix-vector multiplications and standard triangular system solving.
But in general we do this implicitly with the HSS factorization tree whose structured
is highly parallelized. We associate with each tree node i a solution vector yi also.
The solution vectors are generated in the following way.

First partition b conformally according to the bottom level nodes, that is, if {mi}
is the partition vector for the HSS matrix then partition b into {yi} where i is a leaf-
node and yi has length mi. Associate each leaf node with a yi. Each non-leaf node
yi is set to be empty initially.

Next for each yi apply QT
i to it (see (4.11))

ŷi = QT
i yi =

(
ŷi;1

ŷi;2

)
mi − pi

pi
, (4.12)

where ŷi was partitioned according to (4.1) and (4.2). Then we solve for

ỹi =
(

Li

Ti I

)−1

ŷi =
(

ỹi;1

ŷi;2 − Tiỹi;1

)
≡

(
ỹi;1

ỹi;2

)
mi − pi

pi
, (4.13)

where ỹi;1 = L−1
i ŷi;1. yi is now replace by ỹi;1, and ỹi;2 is passed to the parent node

p of i, that is, replace yp by
(

yp

ỹi;2

)
. Here for example, if i and j are the left and
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right children of p, respectively, then essentially yp =
(

ỹi;2

ỹj;2

)
. The formation of yp

essentially finish the operation
(

PT
1

PT
2

)(
ỹi

ỹj

)
(see (4.11)).

We recursively apply this procedure to the HSS factorization tree, until finally,
for the root node n we are ready to apply L−1

n to the generated yn: yn ← L−1
n yn.

Note no extra storage are necessary for yp as it can be stored in two pieces in it child
solution vectors yi and yj . This essentially means all solution vectors can be stored
in the vector b.

4.3.2. Backward substitution. In this stage, we want to compute x = L−T
H y,

say, for (4.8) and (4.11)

x =
(

Q1

Q2

)
L̂−T

3

(
P1

P2

)
L−T

3 y. (4.14)

We associate each node of the HSS factorization tree a solution vector xi. For the
root node we first get

xn = L−T
n yn ≡

(
x̃c1;2

x̃c2;2

)
mc1 − pc1

mc2 − pc2

, (4.15)

where the new xn is partitioned according to its children c1 and c2. The partition

essentially applies the permutation
(

Pc1

Pc2

)
to yn (see (4.14)). Next for each

node i if it is a left child of its parent p, then

xi = L−T
i

(
yi − TT

i x̃i;2

)
. (4.16)

This performs the operation L̂−T
p xp (see 4.14). Now set

xi ←
(

Qixi

x̃i;2

)
, (4.17)

where x̃i;2 was inherited from p. This completes the formation of xi. We also partition
xi according to its children ĉ1 and ĉ2,

xi =
(

xĉ1;2

xĉ2;2

)
mĉ1 − pĉ1

mĉ2 − pĉ2

. (4.18)

Then we continue the recursion.
After the backward substitution is finished, combine xi for all leaf node i, the

vector is automatically the solution x. We can see, solution vectors {xi} can use the
physical spaces of {yi} which can essentially be stored in b. Therefore by using b
as the intermediate workspace it automatically becomes the solution x after the two
substitutions. In a real code {xi} and {yi} can be simply some pointers pointing to
appropriate index positions in vector b. It turns out that {xi} happens to be the
hierarchical partitioning [13] of x.

If H is a compact N×N HSS matrix with HSS rank p, it is easy to verify the cost
of the above solver is O(pN). Therefore, the overall complexity for solving Hx = b is
linear in N , including the costs for both generalized Cholesky factorization and system
solving. We also test the solver on the same matrices as in the previous section (Table
4.2) using their generalized Cholesky factors. See Table 4.3 for the run-times.
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Size
m = 2p 256 512 1024 2048 4096 8192 16, 384

16 0.003 0.006 0.013 0.029 0.054 0.109 0.227
32 0.003 0.005 0.012 0.023 0.063 0.109 0.242
64 0.003 0.006 0.016 0.039 0.078 0.156 0.313

128 0.011 0.035 0.084 0.182 0.383 0.781 1.609
Size

m = 2p 32, 768 65, 536 131, 072 262, 144 524, 288 1, 048, 576
16 0.457 0.871 1.746 3.566 7.211 13.875
32 0.492 0.984 1.930 3.981 8.711 · · ·
64 0.652 1.305 2.602 5.227 · · · · · ·

128 3.348 6.512 13.027 · · · · · · · · ·
Table 4.3

Computation times for solving linear systems with their generalized Cholesky factors.

Next we consider the stability of the overall procedure for solving an SPD HSS
system. We first factorize the HSS matrix with the superfast factorization algorithm
in the previous subsection, and then solve the system with the generalized Cholesky
factors. This procedure has similar stability as the solver in [8]4.4, that is, it is stable
when ||Ri|| < 1 for a submultiplicative norm. We can verify that the construction
algorithm in Section 3 provides HSS matrices satisfying this condition for the 2-norm.
For the same random test matrices as in Table 4.2 and 4.3 (with sizes from 256 to
4096) we report the experimental backward errors ||Hx − b||1/[εmach(||H||1||x||1 +
||b||1)] in Table 4.4. The error results indicate the backward stability of the procedure
(factorization plus system solve).

Size
m = 2p 256 512 1024 2048 4096

16 0.38 0.47 0.39 0.53 0.62
32 0.43 0.42 0.40 0.49 0.66
64 0.61 0.44 0.45 0.52 0.65

128 0.72 0.64 0.46 0.50 0.62
Table 4.4

One-norm backward errors ||Hx− b||1/[εmach(||H||1||x||1 + ||b||1)] of the fast solver.

5. HSS compression. During the operations of HSS matrices we may get HSS
matrices which are not compact (to some specific tolerance τ). As an example, we can
add two HSS matrices with the same block partitions and get a new HSS form which
may not be compact enough. Let X and Y be two HSS matrices with same HSS tree
structures and are commensurately partitioned, that is, mi(X) = mi(Y ). Assume
their generators are {Di(X)}, {Ui(X)}, · · · and {Di(Y )}, {Ui(Y )}, · · · , respectively,
then the sum C = X + Y has generators

Di(X + Y ) = Di(X) + Di(Y ),

Ui(X + Y ) =
(

Ui(X) Ui(Y )
)
, Ri(X + Y ) =

(
Ri(X)

Ri(Y )

)
,
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Vi(X + Y ) =
(

Vi(X) Vi(Y )
)
, Wi(X + Y ) =

(
Wi(X)

Wi(Y )

)
,

Bi(X + Y ) =
(

Bi(X)
Bi(Y )

)
.

Also the resulting HSS representation of X + Y has its HSS representation rank to
be the sum of the corresponding ranks of X and Y , although the HSS rank may be
smaller. To maintain high efficiency we need to use certain compression techniques
to recover compact HSS forms.

In general, assume we want to compress an HSS matrix H which has n HSS tree
nodes and generators {Di}, {Ui}, {Vi}, {Ri}, {Wi}, {Bi}. If H is compact then we
expect the columns of Ui to be the column basis for the i-th off-diagonal block row
(type-2), and the columns of Vi, the row basis for the i-th off-diagonal block column.
Thus the first stage is to make all Ui and Vi to have orthonormal columns, that is,
H in proper form. Here we say H is in left proper form if all Ui have orthogonal
columns; and H is in right proper form if all Vi have orthogonal columns. These
can be achieved by τ -accurate SVD or rank revealing QR factorization for a given
tolerance τ . Usually we need two stages in the compression, a forward stage for the
HSS tree nodes p = 1, 2, · · · , n to bring H into a proper form, and a backward stage
for nodes p = n, n− 1, · · · , 1 to guarantee that the HSS form is compact. The second
stage is needed because a proper form may not be compact.

5.1. Forward stage. In the forward stage (bottom-up postordering traversal)
for a general HSS tree node p we first compress Up, Vp. If p is a leaf-node, compute
QR factorizations

Up = ŨpPp, Vp = ṼpQp. (5.1)

Then pass Pp and Qp to generators Bp and Rp

R̂p = PpRp, Ŵp = QpWp. (5.2)

If p is also a right child, update

B̃j = PqBpQ
T
p , B̃p = QpBpP

T
q , (5.3)

where q is the sibling of p.
If p is a non-leaf node, Up and Vp are compressed indirectly since, say, Up is

implicitly given by

Up =
(

ŨiR̂i

ŨjR̂j

)
=

(
Ũi

Ũj

)(
R̂i

R̂j

)
,

where i and j are the left and right children of p, and
(

Ũi

Ũj

)
has orthonormal

columns (and is thus compact). Thus it suffices to compute QR factorizations
(

R̂i

R̂j

)
=

(
R̃i

R̃j

)
Pp,

(
Ŵi

Ŵj

)
=

(
W̃i

W̃j

)
Qj . (5.4)

Then use (5.2) and (5.3) to update the generators, and the procedure repeats. At the
end of this stage we have H in a new HSS form with generators {D̃i}, {Ũi}, {Ṽi},
{R̃i}, {W̃i}, {B̃i}.
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5.2. Backward stage. This is a top-down stage (reverse-postordering traversal)
for nodes p = n, n−1, · · · , 1. For simplicity, we still use {Di}, {Ui}, {Vj}, {Ri}, {Wi},
{Bi} to denote the generators H and use tilded notations for new generators. For
convenience, we assume that an HSS tree node p has its left and right children i and
j, respectively, and i, j have children as shown in Figure 5.1. If p is a leaf node, or its
children are leaf nodes, we can easily modify the general process below.

Fig. 5.1. Node i and related nodes.

For p = n, the root node, we compute QR factorizations

Bi = PiSi, BT
i = QiTi. (5.5)

Accordingly, we set

B̃i = PT
i BiQi ≡ SiQi = PT

i TT
i . (5.6)

Next we update Rc1 ,Wc1 , Rc2 , Wc2 by computing

(
R̃c1

R̃c2

)
=

(
Rc1

Rc2

)
Pi,

(
W̃c1

W̃c2

)
=

(
Wc1

Wc2

)
Qj . (5.7)

Ui and Vi are then updated. If i is a non-leaf node, they are updated implicitly to

Ũi = UiPi, Ṽi = ViQj (5.8)

since, say, Ui is given implicitly by

Ui =
(

Uc1Rc1

Uc2Rc2

)
=

(
Uc1

Uc2

)(
Rc1

Rc2

)
.

If i is a leaf node, we need to form (5.8) explicitly. Note that at the point the off-
diagonal block (both row and column) corresponding to node i is given by UiBiV

T
j =

ŨiS
T
i V T

j . For convenience we write this block as ŨiSiV̄
T
i where V̄i(≡ Vj) has orthonor-

mal columns. Similarly, we can update the generators for node j, and j corresponds
to off-diagonal block (both row and column) UjBjV

T
i = ŪjT

T
j Ṽ T

j where Ūj(≡ Ui)
has orthonormal columns.

The compression is then done recursively. For a general node p, we have the
following claim.



FAST ALGORITHMS FOR HSS MATRICES 21

Claim 5.1. Node p corresponds to off-diagonal block row and column of the forms
ŨpSpV̄

T
p and ŪpT

T
p Ṽ T

p , respectively, where Ũp, Ṽp, Sp, and Tp are given by pervious
compression steps, and Ūp and V̄p both have orthonormal columns

This claim holds when p is the root as shown above, and can be verified by
induction as follows. We assume the claim is true for node p and show that it also
holds for the children of p. Let l1, · · · , i, j, · · · , lk be the HSS tree nodes in the same
level as i and j. The off-diagonal block row corresponding to i is

(
UiBiV

T
j UiRiSpV̄

T
p

)
= Ui

(
Bi RiSp

)
V̄ T

i , (5.9)

where we have permuted the columns so that the (i, j) block UiBiV
T
j appears in

the front, and Vi =
(

Vj

V̄p

)
has orthonormal columns. On the other hand, the

off-diagonal block column corresponding to node j is given similarly by
(

UiBiV
T
j

ŪpT
T
p WT

j V T
j

)
= Ūj

(
Bi

TT
p WT

j

)
V T

j , (5.10)

where, again, we have permuted the rows so that the (i, j) block UiBiV
T
j appears

on the top, and Ūj =
(

Ui

Ūp

)
has orthonormal columns. Note that the i-th

off-diagonal block row and the j-th off-diagonal block column share the same block
UiBiV

T
j . Now compute QR factorizations

(
Bi RiSp

)
= PiSi ≡ Pi

(
Si,1 Si,2

)
,(

BT
i WjTp

)
= QjTj = Qj

(
Tj,1 Tj,2

)
,

where Si and Ti are partitioned conformally. Thus we have

Bi = PiSi,1 = TT
j,1Q

T
j .

We can then set

B̃i = PT
i BiQj ≡ Si,1Qj = PT

i TT
j,1.

Next we update Rc1 ,Wc1 , Rc2 ,Wc2 as in (5.7), which implicitly update Ui and Vi as
in (5.8) (if i is a leaf node we need to form (5.8) explicitly). Similarly, we update
j, the other child of p. After these updates, we can write the off-diagonal block row
corresponding to node i as ŨiSiV̄

T
i , and the off-diagonal block column corresponding

to node j as ŪjT
T
j Ṽ T

j . This verifies Claim 5.1.
If p is a leaf node, no actions are necessary since its generators have been com-

pressed in the steps for its parent node. We apply the above procedure recursively
top-down along the tree for p = n, n − 1, · · · , 1. When it finishes H is in compact
HSS form with generators {D̃i}, {Ũi}, {Ṽi}, {R̃i}, {W̃i}, {B̃i}. The cost for HSS
compression is O(p2N) where p is HSS rank of H before the compression.
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